iLab Neuromorphic Robotics Toolkit  0.1
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Miscellaneous maths utilities and constants

Modules

 Precomputed constants 128 bits IEEE quad
 
 Precomputed constants 256 bits IEEE
 

Functions

double nrt::lngamma (double x)
 Compute log of Gamma. More...
 
double nrt::normalPDF (double x, double mu, double var)
 Find the value of a normal PDF at x. More...
 
double nrt::normalCDF (double x, double mu, double var)
 Find the value of a normal CDF at x. More...
 
double nrt::vonMisesPDF (double x, double mu, double k)
 Find the value of a von Mises distribution at x. More...
 
template<class T >
nrt::clamped (T const &val, T const &min, T const &max)
 Clamp a value to within a min-max range. More...
 

Function Documentation

double nrt::lngamma ( double  x)

Compute log of Gamma.

double nrt::normalPDF ( double  x,
double  mu,
double  var 
)

Find the value of a normal PDF at x.

Parameters
xThe point at which to find the value of the normal PDF
muThe mean of the normal distribution
varThe variance (stddev^2) of the normal distribution
double nrt::normalCDF ( double  x,
double  mu,
double  var 
)

Find the value of a normal CDF at x.

Parameters
xThe point at which to find the value of the normal CDF
muThe mean of the normal distribution
varThe variance (stddev^2) of the normal distribution
double nrt::vonMisesPDF ( double  x,
double  mu,
double  k 
)

Find the value of a von Mises distribution at x.

The von Mises distribution is a continuous probability distribution on a circle, and is a close approximation to a normal distribution which is wrapped between -PI to PI.

Parameters
xThe point at which to find the value of the von Mises PDF
muThe 'mean' of the distribution
kThe 'concentration' of the distribution. As k increases, the von Mises distribution approaches a normal distribution with mean mu, and variance 1/k.
template<class T >
T nrt::clamped ( T const &  val,
T const &  min,
T const &  max 
)
inline

Clamp a value to within a min-max range.

Definition at line 37 of file MathUtilsImpl.H.

Referenced by drawPolygonFill().